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The airways of the lung form a rapidly diverging system of branched tubes, 
and any discussion of their mechanics requires an understanding of the effects 
of the bifurcations on the flow downstream of them. Experiments have been 
carried out in models containing up to two generations of symmetrical junctions 
with fixed branching angle and diameter ratio, typical of the human lung. 
Flow visualization studies and velocity measurements in the daughter tubes 
of the first junction verified that secondary motions are set up, with peak axial 
velocities just outside the boundary layer on the inner wall of the junction, and 
that they decay slowly downstream. Axial velocity profiles were measured 
downstream of all junctions at a range of Reynolds numbers for which the flow 
was laminar. 

In each case these velocity profiles were used to estimate the viscous dissipation 
in the daughter tubes, so that the mean pressure drop associated with each 
junction and its daughter tubes could be inferred. The dependence of the dissi- 
pation on the dimensional variables is expected to be the same as in the early 
part of a simple entrance region, because most of the dissipation will occur in 
the boundary layers. This is supported by the experimental results, and the 
ratio Z of the dissipation in a tube downstream of a bifurcation to the dissipation 
which would exist in the same tube if Poiseuille flow were present is given by 

2 = (C/41/2) (Red/L)*, 

where L and d are the length and diameter of the tube, Re is the Reynolds number 
in it, and the constant C (equal to one for simple entry flow) is equal to 1.85 
(the average value from our experiments). In general, C is expected to depend 
on the branching angles and diameter ratios of the junctions used. No experi- 
ments were performed in which the flow was turbulent, but it is argued that 
turbulence will not greatly affect the above results at  Reynolds numbers less 
than and of the order of 10000. Many more experiments are required to consoli- 
date this approach, but predictions based upon it agree well with the limited 
number of physiological experiments available. 

t Also Department of Mathematics. 
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1. Introduction 
The function of the lungs is the exchange of respiratory gases (oxygen and 

carbon dioxide) between the atmosphere and the circulating blood. This is 
accomplished by transporting air to and from the terminal respiratory units, 
the alveoli, by a complex system of branching tubes, the bronchial tree. Each 
alveolus is a thin-walled sac approximately 500 pm in diameter and surrounded 
by blood in thin-walled capillaries. It is here that transfer of gases between 
blood and air takes place. 

In  order that gas exchange should take place over as large an area as possible, 
the total cross-section of the bronchial tree increases rapidly with distance from 
the trachea (or windpipe) towards the alveoli. At each bifurcation the total 
cross-sectional area increases, although the daughter tubes individually are 
always smaller than the parent. Thus, in the human lung, while the trachea has 
a diameter of approximately 1-8 cm, the terminal airways, alveolar ducts after 
about 20 generations of branches, have diameters of approximately 0.041 em, 
but their total cross-sectional area is about 12000 em2 (these figures are taaken 
from the anatomical data of Weibel (1963)). Consequent upon the increase in 
area is a decrease in fluid velocity, and a fortiori of the Reynolds number, as the 
air passes down the lung. If, for example, the Reynolds number in the trachea 
is 8000-f (corresponding to a volume flow rate of approximately 1600 cm3/sec, 
which is well within the physiological range), that in the terminal airways will 
be approximately 0.04. It is clear that a fundamental prerequisite of any 
discussion of lung mechanics, from the point of view of studying either gas 
dispersion or the energetics of breathing, is a knowledge of the fluid mechanics 
of flow in branched tubes at  all Reynolds numbers less than or of the order of 
10 000, and a technique for applying that knowledge to the lung itself. 

In  a recent series of papers (Schroter & Sudlow 1969; Pedley, Schroter & 
Sudlow 1970a, b )  we have developed a method for tackling the problem. The 
resulting prediction of the pressure drop down the bronchial tree on inspiration, 
as a function of flow rate, agrees well with observation. We believe that the 
application of our approach is not restricted to physiology, and that it may be 
of some interest to fluid dynamicists in general. We present here a condensed 
version of this work, omitting most of the physiological details, and dwelling to  a 
greater extent on the fluid mechanical implications. 

The complexity of the problem compels us at  the outset to make a number 
of simplifying assumptions. The airways are assumed to be straight circular 
tubes, with smooth walls, and the air is regarded as incompressible and of 
uniform density. In addition we restrict our discussion primarily to inspiratory 
flow (from the parent to the daughter tubes at each bifurcation: figure I )  and 
consider only steady flows. This last is probably the most controversial assump- 
tion from the physiological point of view, but it is argued that the unsteadiness 
has little effect on the fluid dynamics a t  the frequencies usually encountered 
during breathing (see Schroter & Sudlow 1969). A complete description of the 

Reynolds number in a pipe is here defined in terms of the diameter and mean velocity. 
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flow at every point of the airway network is evidently still out of the question, 
and we have found it convenient to regard the lung as made up of a large number 
of units, each consisting of a junction and the pair of daughter tubes issuing from 
it. The flow at any point in the daughter tubes will depend on many parameters, 
including the co-ordinates of the point, the Reynolds number in the tube, the 
ratios of the diameters of the daughter tubes to each other and to the parent 
tube, the angles which the axes of the daughter tubes make with that of the 

FIGURE 1. Qualitative picture of flow downstream of a single junction with Poiseuille 
flow in the parent tube. Direction of secondary motions and new boundary layer indicated 
in lower branch; velocity profiles in the plane of the junction ( ) and in the normal 
plane (- - - - -) indicated in the upper branch. 

parent, the shape of the junction (i.e. the radii of curvature of the walls at  the 
junction), and the nature of the flow at the downstream end of the parent tube 
(which in general is a daughter of a previous junction, so the relative orientations 
of successive junctions is a further parameter to be considered when the units 
are joined). We have further restricted our discussion to symmetrical bifurcations, 
where the two daughter tubes me identical and make equal angles with the 
parent; the single ‘branching angle’ is then defined as the angle between the 
axes of the two daughter tubes. 

A qualitative picture of the flow in a daughter tube can be built up for the 
case where an axisymmetric unidirectional laminar flow, with maximum velocity 
on the axis, is present in the parent tube. First of all the flow is split into two 
streams, so that a new boundary layer is formed on the inside wall of the daughter 
tubes, with maximum axial velocity just outside it. On top of that the flow 
turns a corner, so that the inertia of the faster moving fluid carries it towards 
the outside of the bend (the inside wall of the junction), which maintains the 
maximum axial velocity near that wall, and generates transverse velooity 
components, or secondary motions. Figure 1 contains qualitative pictures of the 
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expected axial velocity profiles in the plane of the junction and normal to it, 
together with a diagram of the secondary streamlines. In  addition, depending 
on the sharpness of the corner in the outside wall of the junction, there may be 
a region of' separated flow. All these effects will be modified downstream by the 
action of viscosity, but in a system like the lung, where the lengths of the tubes 
are at most four times their diameters, this modification will not be far advanced 
(for Reynolds numbers greater than approximately 100) before another junction 
is encountered, and the flow is disturbed again. No qualitative picture of the flow 
downstream of the second or subsequent junctions is readily available. 

. 
'\\ (4) '. 

FIGURE 2. Diagram of model used, showing first- and second-generation branches. Case 1 : 
first-generation branches. Cases 2 and 3 : second-generation branches when both junctions 
are in the same plane. Case 4 (not shown): second-generation branches when second 
junction is normal to the first. Stations 1, 1' and 2 define the limits of a junction and its 
daughter tube. 

For this reason we set up an experiment in a model branched Cube system 
containing two generations of junctions, with a geometry typical of the larger 
airways in the lung (see figure 2, noting the two different orientations of second- 
generation junctions). The branching angle and diameter ratio were the same at  
each junction. This experiment, described in some detail in $2, consisted of two 
parts. First, flow visualization studies confirmed the above qualitative picture 
of flow downstream of the first junction. Secondly, hot-wire velocity measure- 
ments were made, a t  various distances downstream of all junctions at  several 
Reynolds numbers, from which axial velocity profiles were inferred. These 
profiles again confirm the above picture for a first junction, and reinforce the 
expectation that the flow downstream of a second junction is complex. 

The question arises as to how these measured profiles can be used to make 
quantitative predictions in other systems and at other Reynolds numbers. In 
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particular, we would like to predict the pressure drop down a system of branched 
tubes as a function of flow rate. It was not possible in our experiments to measure 
the mean pressure drop directly, because the variations in pressure across a 
cross-section were as large as the overall downstream pressure drops. It is only 
in a system with many junctions or great lengths of tube that a mean pressure 
drop can be satisfactorily determined. 

Let us consider the energy balance for a single ‘unit’, from station 1 a t  the 
downstream end of the parent tube to station 2 at  the downstream end of 
the daughter tubes (figure 2 ) .  The rate at which the pressure forces do work on 
the fluid in the unit, plus the rate of loss of kinetic energy of that fluid (occasioned 
by the increase in cross-sectional area), is equal to the rate of dissipation of energy 
by viscosity. Let p ,  q and u represent the pressure, the total velocity, and the 
axial velocity at a point. If we now define the mean drop in pressure, AP, in 
kinetic energy per unit volume, APk, and in ‘viscous pressure’, APv, between the 

where the integrals are taken over the whole cross-section of the tubes a t  the 
relevant station, where D is the total viscous dissipation of energy in the unit, 
and where the denominator in each case is the volume flow rate, then the energy 
balance may be written 

A knowledge of the velocity field everywhere is sufficient for calculations of 
AP, and LIP, and hence also for AP. 

In  3 3 we explain how the limited velocity profiles obtained from our experi- 
ments can beused to estimate the energy dissipation in every case. This estimateis 
based on several approximations, of which the most important is that the volume 
of the region occupied by the junct.ion itself (between stations 1 and 1’ in figure 2) 
is negligible compared with that of the daughter tubes (between stations 1’ and 2). 
Thus the dissipation D of (1.1) is taken to be equal to the dissipation in the 
daughter tubes only. It is implicit in this approximation that the viscous forces 
are not greater within the junction than beyond it, which is reasonable because 
the secondary motions are generated by inertial forces, and only subsequently 
modified by viscosity. The consequence of this approximation will be slightly 
to underestimate the total dissipation. 

The results are presented in the form of two ratios Y and 2. Y is the ratio of 
the dissipation per unit length of a given tube at  a distance 2 from the junction 
to the value this quantity would have if Poiseuille flow were present in that 
tube at  that flow rate. 2 is the ratio of the total dissipation in a given length of 
tube to the same quantity in Poiseuille flow. Since Poiseuille flow is associated 
with minimum viscous dissipation, both Y and 2 must be greater than 1. 
Estimates of PI, are also given in 5 3. 

In order to use these results predictively, it is necessary to have some under- 
standing of the physical processes which govern the energy dissipation in a tube 

AP+APk = AP,. (1.2) 

21 F L M  46 
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downstream of a bifurcation. Our view of the mechanisms is foreshadowed by 
the above remark that when the fluid passes through a junction, a new boundary 
layer is formed on the inside wall of the daughter tubes, with maximum velocities 
outside it. This boundary layer will grow with distance downstream, as in 
classical entry flow, and the dissipation will be greatest within it, where the 
shear is high. Furthermore, the thickness of the boundary layer will not in 
general become comparable with the tube radius because another junction is 
encountered only three to four diameters downstream, and new boundary layers 
are again formed. We therefore postulate that the dependence of the dissipation 
on Reynolds number (Re) and on the number of diameters from the junction 
(z/d) is the same as in the simplest entry flow; this dependence is set out in $4. 
Since in our experiments the branching angles and diameter ratios of all junctions 
were the same, the only variable unaccounted for is the profile in the parent tube. 
(Although it is shown that both flat and parabolic profiles in the parent of the 
first junction lead to similar profiles in the daughters.) Thus in a given tube the 
ratios of the actual values of Y and 2 to their entry flow values should be equal 
and constant ( = C, say), but might vary from tube to tube. The results presented 
in $4 show that C is independent of both Re and x/d for each tube, and there is 
no significant difference between the values of C obtained from the three types 
of second-generation tube, although this common value is somewhat less than 
its value for first-generation tubes. The difference is still not large, and as a 
first attempt at predicting the pressure drop down a more complex system like 
the lung it has been ignored, and C set equal to the overall mean. 

The above discussion, and our experiments, have been based on the assumption 
of laminar flow in all tubes. However, Reynolds numbers of the order of 10000 
are encountered in the human trachea during rapid breathing, and hence 
turbulence will be present in the first few generations of airways. This point is 
taken up in 3 5 and the rather surprising conclusion is reached that the presence 
of turbulence a t  these Reynolds numbers has little effect on the overall dissipa- 
tion (and hence pressure drop) in branched tubes, which will be underestimated 
by only a few per cent. 

2. Experiments 
The experiments were conducted in Y-shaped perspex models satisfying all 

the conditions described above and depicted in figure 2. The angle of branching 
at  each junction was 70" and the diameter ratio of daughter to parent tube at  
each junction was 0-78 (the parent tube of the first junction had a diameter of 
2-54cm). The length of the tube between the first and second junction was 
7.0 em, with a length to diameter ratio of approximately 3.5. Most of the experi- 
ments were conducted in models with fairly sharp corners a t  the junctions, 
where the radius of curvature at  the outer wall was equal to the radius ofthe 
parent tube. Some comparative studies were carried out with more rounded 
corners, where this radius of curvature was four times the radius of the parent 
tube, and although separation occurs in the former case but not the latter, the 
velocity profiles were not significantly altered except in regions of low shear 
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which contribute negligibly to the dissipation. The Reynolds number in the 
parent tube was varied between 280 and 1090, so that the Reynolds numbers in 
a tube of the second generation varied between 115 and 450. 

The first junction was usually set at the end of a long straighk pipe so that 
the flow entering the first junction was approximately Poiseuille flow (verified by 
hot-wire measurement of the profile), although in some cases it was set a t  the 
end of a very short pipe, when the profile was seen to be approximately flat, 
with thin boundary layers. 

(a )  Plow visualization studies 

These were performed with a single junction only. Smoke was introduced with 
very low injection velocity through a series of small holes from a manifold 
fitted along the outside edge of one daughter tube. Secondary motions were 
observed at  all Reynolds numbers studied, with either flat or parabolic profiles 
in the parent tube, figure 3(a) (plate 1) is an end view of the daughter tube, 
looking up towards the junction, and clearly shows the form of the secondary 
motions. 

A few studies were made of expiratory flow (from the daughter tubes to the 
parent). Smoke was injected through a fine hypodermic some distance upstream 
of the junction. Figure 3 (b )  is an end view of the parent tube, showing the pattern 
of four secondary vortices, resulting from the simultaneous turning of two 
streams. 

( b )  Velocity pro$le memurements 
These were made in the daughter tubes of both first- and second-generation 
junctions. A hot wire (12 pm diameter, 0.15 cm length) was introduced down- 
stream and positioned by a micromanipulator. It was connected to a DISA 
constant temperature anemometer (Model 55A Ol), which was calibrated a t  
frequent intervals during the experiments. Velocity profiles were measured at 
intervals of 1 or 2 cm downstream of each junction. Profiles in the plane of the 
junction and normal to it were obtained from point velocity measurements 
made a t  0.1 cm steps across the diameters of the tube in those planes (except at 
0.1 cm from the wall where accurate measurement was impossible). The long 
axis of the hot wire was always perpendicular to the axis of the tube being 
investigated, and lay in the plane of the junction. The readings were in all 
cases interpreted as measurements of axial velocity u, although the total heat 
transfer from the wire includes contributions from the transverse velocity 
components v and w. We assume that these contributions are negligible because 
(i) and w are expected to be of smaller magnitude than u (from experimental 
and theoretical studies on flow in curved pipes by Ward-Smith (1963) and 
McConologue & Srivastava (1968) respectively); and (ii) the heat transfer from 
the wire depends primarily on the velocity normal to it (see Champagne, Sleicher 
6 Wehrmann (1967) for the precise extent to which this is true), which here is 
essentially u. 

An estimate of the systematic error associated with this interpretation was 
made from computations of the mean velocity through each tube, which is 

24-2 
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known independently. The mean velocity calculated from the measured profiIes 
(equation (3.7) below) was on average 7 % above the actual mean. To reduce the 
effect of these errors, all measured velocities were in each case reduced by 
ratio of the actual mean to the computed mean. After this adjustment, the 
errors in the measured velocities are certainly less than lo%,  except possibly 

Radial position Radial position Radial position 

FIGURE 4. Changes in the velocity profile in the plane of the junction for case 1. 
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FIGURE 5. Changes in the velocity profile in the plane normal t o  the junction for case 1.  
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with ;I parabolic entry profile, and at  a Reynolds number of 700 with a flat entry 
profile, which can be seen to differ little from the parabolic case. Figure 5 shows 
profiles normal to the plane of the junction at  Reynolds numbers of 700 and 
290 with a parabolic entry profile. Note how the qualitative description of Che 
flow given in the introduction is borne out by these profiles. Note too the slow 
development of the profiles downstream, recalling that when a second junction 
is added it will be placed only 34 diameters downstream of the first. 

Figure 6 shows profiles in each plane at three positions downstream of a 
second junction, for a single Reynolds number of 450 (corresponding to a 
Reynolds number of 700 in the first generation tube). These profiles are for case 2 
(figure 2), where the second junction is in the same plane as the first, and the 
flow is predominantly from the inside edge of the first-generation tube. Profiles 
were also obtained for cases 3 and 4 (see Schroter & Sudlow 1969). The profiles 
in the plane normal to the junction are approximately symmetrical in cases 1-3, 
as expected, but not in case 4 because the second junction is in a different plane 
from the first, and the secondary motions are therefore oriented differently. 
Incidentally, although the mean velocity in cases 2 and 3 might be expected to 
be different (for a given flow rate in the parent tube) because of the asymmetry 
of the entry profile, the computed means did not differ significantly. The rapid 

I 
I 
I 
I 
I 
I 
I 
I 

I 1 

a t  the very lowest velocities which in any case contribute little to the integrals 

Some typical profiles (not reduced in the above way) are shown in figures 4-6. 
Figure 4 shows profiles in the plane of the junction at  three positions downstream 
of the first junction (case 1 in figure 2), at Reynolds numbers of 700 and 290 

of (1.1). 

In plane of bifurcation Normal to plane 
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adjustment of the profile in the plane of the junction in the case shown, to an 
almost symmetrical form, is probably a consequence of the fact that the 
secondary motions set up by the second junction in this case are in the opposite 
sense to those set up by the first junction. 

3. Energy dissipation 
It is convenient to describe the flow in a given tube in terms of cylindrical 

polar co-ordinates (x, r,  8),  where the tube surface is the cylinder r = a, and the 
zero of x occurs at  that station where the walls of the tube first become parallel 
(see figure 2). Let the components of velocity in the axial, radial, and tangential 
directions be u, u, w respectively. The dissipation per unit volume of the fluid 
(9) at  any point can then be written as the sum of squares of expressions con- 
taining u, v, tu and their space derivatives. If we assume that v and w are small 
compared with u, by a factor of order of magnitude 6,  say, and that x-derivatives 
are small compared with r- and €'-derivatives by a similar factor (justified by the 
profiles of figures 4-6, and by an appeal to the continuity equation, from which 
aujax is seen to be of the same order as a v p ,  etc.), then the exact expression for 
9 can be replaced by the approximate formula 

where neglected terms are of the second order in 6.  This approximation will 
result in a slight underestimate of 9. The dissipation per unit length of the tube 
a t  a given value of x is then given by 

D, (x) = g r  dr do, 

and the total dissipation in the length of tube between z, and x, is 

D = JI D,  (x) dx. (3.3) 

Calculation of these quantities requires that we know u as a function of x, r 
and 8. In  fact we have isolated velocity measurements a t  certain values of r in 
two perpendicular planes (i.e. a t  8 = 0, *n, n, jn) for a few given values of x. 
Standard interpolative procedures are used to give smooth functions for u(r)  
at these values of 8, and the simplest smooth periodic function of 0 which has 
the correct form at the four given values of 0 is 

U(T, 8 )  = g, ( r )  + g, ( T )  cos 28 + 9, ( T )  sin 8 + g4 ( r )  cos 8,  (3.4) 

where 
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Substitution of (3.4) into (3.1) and (3.2) then gives 

Dl(4 = ..I;{; (4s4+sl+d)+(2s;2+s6"+y;2fg~2)),dr, (3.6) 

where a prime denotes differentiation with respect to r. 

Case 
1 

Case 
2 

Case 
3 

Case 
4 

(cmlsec ) 
52.4 
41-6 
31.3 
22.0 
13.3 

40.9 
32.5 
17.2 

40.9 
32.5 
17.2 

40.9 
32.5 
17.2 

Re x =  2 c m  

699 4.69 
555 5.09 
417 4-10 
293 2.82 
177 3.24 

436 2.57 
347 1.64 
183 1.25 

436 2.48 
347 2-23 
183 1.61 

436 2.34 
347 2.05 
183 1.50 

z = 3 c m  
- 
- 
- 
- 
- 

2.22 
1-82 
1-17 

2.62 
2.66 
1.39 

2.09 
1.80 
1.41 

TABLE 1 

x = 4 c m  z = 5 c m  z = 6 c m  
3.62 - 2.73 
2.96 - 2.38 

2.06 2.98 - 
2.16 - 1-65 
1.68 - 1-47 

1.80 1.76 1.41 
1-36 1.34 1-38 
1.17 1.21 1.17 

1-97 2.34 1.56 
1.67 2.19 1.32 
1.25 1.33 1.12 

2-21 1-79 1.53 
1.75 1.49 1.29 
1-53 1.21 1.16 

In  each tube, at each Reynolds number, and at each value of x for which 
profiles were available (x = 2, 4, 6 cm in case 1, and x = 2, 3, 4, 5, 6 cm in cases 
2, 3, a), the integral in (3.6) was evaluated numerically. In  each case we have 
computed the ratio 

where Dlp = 8rpU2 

is the value of Dl(x)  in Poiseuille flow, and U is the mean velocity in the tube 
considered. (As explained above, the value of calculated from the measured 
profiles and the equation 

did not exactly coincide with the value obtained from the known volume flow 
rate. In general the computed value was higher, the average excess being 7 %, 
with a standard deviation of less than 9 yo. The latter figure is a measure of the 
errors involved in the hot-wire readings and the interpolative procedures outlined 
above.) The calculated values of Y(x ) ,  D and the Reynolds number Re = 2vaplp 
are given in table 1. Notice that Y increases with Re and decreases with x, as is 
to be expected since larger Re and smaller x correspond to flows further removed 
from Poiseuille flow. The total dissipation D in each tube between x = x1 = 2 cm 
and x = x2 = 6 cm was then computed from (3.3) using Simpson's rule. This is 
again compared with its value in Poiseuille flow [Dp = 87rp1!7~(2, - xl)] by means 
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of the ratio Z = DID,. These results are presented in table 2 .  Z increases with 
Re. 

Methods similar to the above were also used to compute the kinetic energy 
per unit volume Pk (equation (1.1)). Neglecting transverse velocities again, the 
formula for Pk is 

Re 699 555 417 293 177 

Case 1 z 3-65 3-22 3-01 2.18 1-91 

Re 436 347 183 

Case 2 z 1.96 1.53 1.19 

Case 3 2 2.32 2-19 1.34 

Case 4 z 1.98 1.67 1.35 

TABLE 2 

This quantity was calculated in each case, for each value of x. However, it is 
only at the downstream end of each pipe (stations 1 or 2 of figure 1) that we 
require to know Pk. Surprisingly, if at x = 6 cm we write 

p k  = Bp02, (3.9) 

the quantity B, which has the value 1 for a parabolic profile and + for a flat 
profile, has no systematic dependence on Re or on the type of tube. Its mean 
value was 0.85, which we assume to be universal for branched tubes of this 
branching angle and diameter ratio. 

4. Entry flow model 
The ratios Y and Z in tables 1 and 2 vary with Reynolds number and Y 

varies with x. As explained in the introduction, we make the hypothesis that 
these variations are the same as in a simple entry flow, and then use the results 
in tables 1 and 2 to verify it. 

The simplest entry flow in a tube occurs when the entry profile is flat and of 
magnitude g .  We assume that within the boundary layer the velocity profile 
is linear, and outside the boundary layer it is flat and of magnitude U, (see figure 
7) .  This is a very simple version of the Pohlhausen method described by 
Goldstein (1938, § 139). The boundary-layer thickness (a&) increases with z and, 
as long as 6 < 1, we may assume that it grows in the same way as the boundary 
layer on a flat plate: 

as = (2px/pu,)3. (4.1) 

The dissipation in this flow (occurring solely in the boundary layer) and the 
magnitude of U, can easily be calculated from equations (3.1), (3.2), (3.3) and 
(3.7). The ratios Y and 2 associated with this flow can be expanded in powers 
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of 6, and the leading terms, when expressed in terms of the dimensionless 
quantities Re and x/d (where d = 2u), are 

(4.3) 

Now, we clearly do not expect exact numerical agreement between the experi- 
mental values of Y and 2 and these equations, but we do expect the same 
dependence on Re and x/d in each tube, as long as 6 < 1 everywhere. (This 

- I - -  - -  - -1- - I - - -5 

FIGURE 7. Scheme for calculation of dissipation in an entry flow. 

condition requires that Lld < Re/8 ,  where L is the length of the tube. In all 
our experiments L / d  = 3.5 and the minimum value of Re was 177, so the maxi- 
mum value of 6 was about 0.38. In  the majority of cases 6 was much less than 
0.38, so our simple model is applicable.) The ratio of the values of Y ( x )  from 
table 1 with the value given by (4.2) should be a constant, C, independent of 
Re and xld, but possibly varying from tube to tube. The ratio of the values of 
2 from table 2 with the value given by (4.3) should also be equal to C. The 
values of C thus computed from Y and 2 are presented in tables 3 and 4 
respectively. 

From these tables we can see that (i) there is no systematic variation of C 
with Re; (ii) there is no systematic variation of C with xld, except in case 1 
where there is a slight decrease; (iii) there is no significant difference between 
the values of C computed from cases 2-4; (iv) there is a noticeable difference 
between the values of C for case 1 (single junction) on the one hand, and cases 
2-4 on the other. 

Clearly the proposed model gives the correct dependence of Y and 2 on Re 
and xld, and we may presume that the same value of the constant C may be used 
for all tubes of a given generation. However, the value of C does appear to 
depend on generation number. In  our application of this work to the lung, we 
have ignored this dependence, and used the average of all the values in table 4: 
C = 1.85. (The average from table 3 is C = 1-77.) The difference between the 
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means for generations 1 and 2 and the overall mean was only of the same order 
as the estimated experimental and interpolative error: less than 20 %. 

Our final result is that the ratio of the total dissipation in a tube downstream 
of a bifurcation (with the given branching angle and diameter ratio) to its value 
in Poiseuille flow is given by C times the value of 2 obtained from (4.3) with 

(4.4) 

C 

R e  
Case 1 699 

555 
417 
293 
177 

Case 2 436 
347 
183 

Case 3 436 
347 
183 

Case 4 436 
347 
183 

x = 2  x = 3  
2.01 - 
2.44 - 
2.27 - 
1.86 - 
2.75 - 

1.56 1.65 
1.11 1.52 
1.17 1.33 
1.50 1-94 
1.51 2.21 
1.51 1.58 
1.42 1.55 
1.40 1.50 
1-40 1.61 

TABLE 3 

x = 4  
2.19 
2.01 
2.33 
2.02 
2.02 
1.54 
1.31 
1.55 
1-69 
1-60 
1.65 
1-89 
1-68 
2.02 

x = 5  

1-68 
1.44 
1.78 
2.24 
2.35 
1.97 
1.71 
1.60 
1.79 

x = 6  

2.03 
1.98 
1-97 
1.88 
2.16 
1.48 
1.63 
1-89 
1.64 
1.55 
1.81 
1.61 
1-52 
1.88 

Re 699 555 417 293 177 
Case 1 C 2.13 2.11 2.28 1.97 2.21 

Re 436 347 183 
Case 2 C 1.62 1-42 1-52 
Case 3 C 1-92 2.03 1.71 
Case 4 c 1.64 1.55 1-72 

TABLE 4 

where C = 1-85. Note that for Reynolds numbers less than 32.7 (if Lld = 3.5) 
2 turns out to be less than one. This is clearly impossible, and indicates that the 
model breaks down for such low Reynolds numbers. In  these circumstances, 2 
should be set equal to one, the best estimate available. 

2 is also the ratio of viscous pressure drop in a tube (AP,, see (1.1)) to the 
Poiseuille pressure drop. Thus in a complex system in which (4.4) is applicable 
at every junction, the overall viscous pressure drop is related to the volume flow 
rate Q and the fluid density p and viscosity ,u by 

Ap, = K(,up)jQ*, (4.5) 

where K depends only on the geometry and dimensions of the system. 
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5. Effect of turbulence 
When the Reynolds number in the trachea exceeds about 2000, the flow will 

be turbulent. When it is as high as 10000, this turbulence will persist into the 
fourth and the fifth generation of airways (Owen 1969). Since both theory 
(Pedley, Schroter & Sudlow 1970b) and experiment (Macklem, Fraser & Bates 
1963) indicate that the majority of the pressure drop occurs in the first few 
generations, it is necessary to consider the effect of the turbulence on the pressure 
drop, and in particular to ascertain how it will alter (4.4). We should point out 
that the ideas set out below have not yet been tested experimentally, and can 
only be regarded as indications of what happens. 

In a turbulent flow, two separate contributions to the dissipation can be 
distinguished: (a)  the dissipation associated with the mean velocity field (in 
general different from its laminar value), and (b )  the dissipation of the turbulent 
eddies. Let us consider (a) first. 

(a) The laminar model of 3 4 was based on the assumption that the dissipation 
in the flow downstream of a junction occurs primarily in the thin boundary 
layers which start on the inside edge of the junction. In turbulent flow, new 
boundary layers will be formed at  the bifurcation in the same way, and will 
initially be laminar. 

If they remain laminar, with only the core turbulent, the dissipation will, at  
least dimensionally, be the same as in completely laminar flow. If the boundary 
layers become turbulent, they will be thicker, and their contribution to the 
dissipation of the mean flow will decrease (but the eddy dissipation will be 
greatly increased). For a laminar boundary layer on a flat plate at zero pressure 
gradient, the critical Reynolds number, Real, for transition to turbulence, based 
on the displacement thickness 

6, = 1-73(~~/U,)4 ,  

is approximately 3400 (this is not to be confused with the theoretically calculated 
critical Reynolds number of about 420, above which infinitesimal disturbances 
grow with time). There are three reasons why the critical value of Resl, should be 
very much less in our case. 

First, there is turbulence in the core of the tube outside the boundary layer, 
which will trigger off boundary-layer transition a t  a much smaller Reynolds 
number. Dryden (1936) gives the value of about 530 when the intensity of 
turbulence in the free stream is 3 %, which is approximately the intensity in the 
core in fully-developed turbulent pipe flow (Hall 1938), and is the highest 
intensity whose effect on boundary-layer transition has been recorded. 

The second possible mechanism of boundary-layer transition is that of Taylor- 
Gortler vortices, associated with flow over a concave. surface. According t o  
Schlichting (1960, p. 443) transition will occur if 

Re,(6/R)a 2 7, 

where 0 is the momentum thickness of the boundary layer ( x  0.386,), Re, is 
the Reynolds number based upon it, and R is the radius of curvature of the 
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concave surface. Note that the value of 7 is again about 20 times the critical 
value for the growth of infinitesimal disturbances. Let us assume thatl the 
transverse velocity components in a daughter tube are approximately 10 yo of 
the longitudinal component. R, then is the radius of curvature, at the extremity 
of its minor axis, of the ellipse which is formed by the intersection of the cylin- 
drical tube with a plane making an angle tan-l(0.l) with its generators: R M 50d. 
From this we can calculate that the critical value of Re,, for transition due to 
Taylor-Gortler vortices is approximately 33 Re*. 

The final mechanism of boundary-layer transition in our case is associated 
with the secondary motions, like that investigated by Gregory, Stuart & Walker 
(1955). They realized that the transverse pressure gradients required for secon- 
dary motions will mean that, in directions which are not parallel to the flow 
just outside the boundary layer, the velocity profile within the boundary layer 
has a point of inflexion. These motions will therefore be strongly unstable, and 
the transition value of Redl in the case they considered (the boundary layer 
over a rotating disk) was reduced to about 680. However, in another example, 
of this type of instability (flow over a swept-back wing) Owen & Randell (1953) 
found a transition value of Re,, of about 400. Let us assume that this value is 
appropriate in our case. It seems likely that the strength of the two latter 
instabilities will preclude their being greatly affected by turbulence in the core. 

Thus the boundary layer is expected to remain laminar as long as 
Re < min (7, 53000 (-)3). 360 

X I 4  xld 
In the lung and in our models, xld 6 3.5, so the second quantity in the bracket 
is everywhere greater than lo6, and the first quantity gives the lower critical 
value of Re, indicating that the third mechanism of transition is dominant in 
this case. For the boundary layer to remain laminar for all x/d < 3.5, Re must 
be less than about 15000 (this number would be reduced to about 4000 if the 
critical value of Real for the third mechanism of transition were 200 not 400). 
Thus, we do expect the boundary layer to remain laminar when the Reynolds 
number in the daughter tube is less than 15000; the model outlined in 94 is 
applicable even when the core is turbulent, and the dissipation associated with 
the mean velocity profile is given by (4.4) with some value of C. 

The value taken by C depends on the details of the mean velocity profile, of 
which, in turbulent flow, we have no direct observations. However, the secondary 
motions, and the distortions of the axial velocity profile, are generated in a 
purely inertial manner, and there is no obvious way in which the turbulence 
would affect them, apart from a more rapid smoothing out of velocity gradients 
in the core of the tube. Furthermore, the velocity profile entering from the 
trachea is likely to have the same general shape as in laminar flow, with a peak 
on the axis, since it consists of a turbulent jet emanating from the constriction 
at the larynx, and interacting with the walls somewhat before the first bifurca- 
tion (Owen 1969). In  the absence of experiments on turbulent flow in branched 
tubes, it seems reasonable to use the laminar value of 1-85 for C. 

( b )  We must now consider the dissipation associated with the turbulent 
eddies. We shall assess its importance on the untested but plausible assumption 
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that it is of the same order of magnitude as in fully-developed turbulent pipe 
flow a t  the same Reynolds number. This assumption is probably an over- 
simplification, as it ignores the fact that there are regions both of unusually 
high and of unusually low shear in the daughter tubes, which will also be regions 
of high and low turbulent intensity (and hence dissipation) respectively. But 
as long as the boundary layer itself remains laminar, the dissipation is unlikely 
to be enormously enhanced. In any case, we shall see that even if the eddy 
dissipation is increased five times over its value in fully-developed flow, it will 
contribute less than 30% of the total dissipation a t  the maximum Reynolds 
number of 104. The eddy dissipation in fully-developed pipe flow can be evaluated 
by subtracting the dissipation associated with the known mean profile from the 
total dissipation in that flow, inferred from experimentally determined skin 
friction coefficients. Let us take the mean velocity profile to be linear very near 
the wall and logarithmic elsewhere (although this is strictly valid only for 
Re > lo4; Patel & Head (1969)), as follows: 

U(Y)/% = U,Yb (0 c Y < a,), 1 

1 - - 1 [ l o g , y + ~ ]  (ao < y < a) ,  
- K  

where u, is the friction velocity, y the distance from the pipe wall, K ,  A are 
constants equal to 0-41, 2.4 respectively (Townsend 1956, p. 202), and a, is 
chosen so that u(y) is a continuous function. We calculate the dissipation asso- 
ciated with this profile from (3.1) and (3.2), and the mean velocity in the pipe 
from (3.7). We can then express both the Reynolds number in the pipe (Re) 
and the ratio of the calculated dissipation to that in Poiseuille flow (2’) in terms 
of the friction Reynolds number Re, = u,a/v : 

( 5 4  

(5.3) 

2A-3  4a 
K Re,+--4a2+ 

2 
K K 

Re = - Re, log, Re, + ___ 

CL A + l  
K K  

where a = u, ao/v = 12 (this and all subsequent results are given to two significant 
figures). 

The ratio of total dissipation in fully-developed turbulent pipe flow to that in 
Poiseuille flow at the same Reynolds number (2,) is given by the ratio of the 
skin friction coefficients C,: for turbulent flow, C, = 0.079Re-3 (valid for 
Re > 3000; Patel & Head 1969), and for Poiseuille flow, C, = 16/Re. Thus 

As examples, let us take two Reynolds numbers in the range of interest: 
(i) Re = 5000. From (5.2), Re, = 180, whence from (5.3), 2’ = 2.9. But from 

(5.4) 2, = 2.9 also. Thus the dissipation in the eddies (proportional to 2, - 2’) 
contributes a very small amount to the total: less than 4 %. Furthermore, the 
value of 2 at this Reynolds number, in a branched tube for which L / d  = 3.5, is 
equal to 12, from (4.4). Thus, if the dissipation of the eddies is of the same order 
of magnitude as in fully-developed flow, it contributes less than 1 yo of the total. 

(ii) Re = 10000. From (5.2), Re, = 320, whence from (5.3), 8’ = 3.9. But from 

2, = 0.0049 Re2. (5.4) 
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(5.4) 2, = 4.9. Thus the eddies contribute about 20 yo to the total dissipation in 
fully-developed pipe flow. However, a t  this Reynolds number, the value of 2 
from (4.4) is approximately 17, so the eddies contribute less than 6 yo of the total 
dissipation in branched tubes. 
These results are not significantly changed if we assume that the mean velocity 
in fully-developed pipe flow obeys a 1/7 power law rather than a logarithmic law. 

For R e  < 10 000, therefore, we are justified in neglecting the contribution of 
turbulent eddies and in using (4.4) for 2. As the Reynolds number increases 
above this value the boundary layers become turbulent, and the eddies contribute 
a greater proportion of the total dissipation, so that (4.4) leads to an increasingly 
severe underestimate of the dissipation, and our model is inadequate. 

6.  Discussion 
The results of applying (4.4) to every junction in a symmetric model of the 

lung (using (3.9) for the kinetic energy term in (1.2)) are exhaustively set out in 
Pedley et al. (19706). It may be remarked here that their agreement with phy- 
siological experiments is considerably closer than that of previous theories, 
based on Poiseuille flow in every tube (Green 1965; Horsfield & Cumming 1968). 
Because most of the systematic errors involved in our model (see above) lead to 
underestimates of the dissipation, we would expect the predicted pressure drops 
still to be too low. However, the as yet limited number of controlled experiments, 
and the inherent variability of physiological parameters, make these differences 
difficult to observe. 

Although the agreement of our predictions with physiological experiments is 
heartening, we should not regard the work described above as more than the 
beginning of a complete study of flow in branched tubes. The chief requirement 
is a much fuller series of model experiments. For a given branching angle and 
diameter ratio, detailed information on the complete velocity field (w and w as 
well as u) should be obtained at many more points within a tube, so that, any 
interpolation method can be used with confidence to give u, v, w as functions of 
5, r,  0 and hence to compute the dissipation accurately. This must be repeated 
for a wide range of Reynolds numbers, including those for which the flow is 
turbulent in one or more generations, in order to provide a complete test both of 
equation (4.4) and the ideas of $5. Then again, the influence of generation 
number on the value of C should be investigated by building models with a 
greater number of generations. Finally, the branching angle and diameter ratio 
should be varied independently, and the experiments repeated at every new 
value. Comparative experiments should also be done to discover the effect of 
varying the curvature of the side walls and flow dividers a t  junctions.? 

In conclusion, mention should be made of a separate series of experiments 
which we are currently performing to test our results in the absence of the 
complicating features present in physiological experiments. A six-generation 
network of branched glass tubes has been constructed so that every junction 

t Such a series of experiments is currently being carried out in the Physiological Flow 
Studies Unit, Imperial College by Mr D. E. Olson. 
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has a branching angle of approximately 70" and a diameter ratio of approximately 
0.78. The parent tube has a diameter of 2.4 cm. At a wide range of 'inspiratory ' 
flow-rates the pressure drop down the system is measured. So, too, are the 
velocity profiles in the parent tube and the final daughter tubes, so that the 
change in kinetic energy per unit volume may be computed. The viscous pressure 
drop can be inferred from these measurements. Preliminary results show excellent 
agreement with the theoretical estimate of the viscous pressure drop obtained by 
applying (4.4) to every tube in the system, for parent tube Reynolds numbers 
between lo3 and lo4. Thus it seems that our general approach is a valid one, and, 
in particular, that our otherwise unverified ideas on the effect of turbulence are 
basically correct. 

We are grateful t o  the Royal Society, the Asthma Research Council, and the 
Tobacco Research Council for their financial support. 
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FIGURE 3. (a)  End view of a daughter branch of a single junction showing secondary 
motions when flow is from the parent to the daughters. ( b )  End view of parent tube of a 
single junction showing secondary motions when flow is from the daughters to the parent. 
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